How to Formulate and Solve Statistical Recognition and Learning Problems
نویسندگان
چکیده
We formulate problems of statistical recognition and learning in a common framework of complex hypothesis testing. Based on arguments from multi-criteria optimization, we identify strategies that are improper for solving these problems and derive a common form of the remaining strategies. We show that some widely used approaches to recognition and learning are improper in this sense. We then propose a generalized formulation of the recognition and learning problem which embraces the whole range of sizes of the learning sample, including the zero size. Learning becomes a special case of recognition without learning. We define the concept of closest to optimal strategy, being a solution to the formulated problem, and describe a technique for finding such a strategy. On several illustrative cases, the strategy is shown to be superior to the widely used learning methods based on maximal likelihood estimation.
منابع مشابه
Modeling and scheduling no-idle hybrid flow shop problems
Although several papers have studied no-idle scheduling problems, they all focus on flow shops, assuming one processor at each working stage. But, companies commonly extend to hybrid flow shops by duplicating machines in parallel in stages. This paper considers the problem of scheduling no-idle hybrid flow shops. A mixed integer linear programming model is first developed to mathematically form...
متن کاملFacial Expression Recognition by ICA with Selective Prior
Permutation ambiguity of the classical ICA may cause problems in feature extraction for pattern classification. To solve that, we include a selective prior for de-mixing coefficients into the classical ICA. Since the prior is constructed upon the classification information from the training data, we refer to the proposed ICA model with a selective prior as a supervised ICA. We formulate the lea...
متن کاملAn Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies
The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...
متن کاملDesign of Data-Driven Mathematical Laws for Optimal Statistical Classification Systems
This article will devise data-driven, mathematical laws that generate optimal, statistical classification systems which achieve Bayes’ error rate for data distributions with unchanging statistics. Thereby, I will design learning machines that minimize the Bayes’ risk or probability of misclassification. I will devise a system of fundamental equations of binary classification for a classificatio...
متن کاملPrincipled Constructive Induction
A framework for the construction of new features for hard classification tasks is discussed. The approach brings together ideas from the fields of machine learning, computational geometry, and pattern recognition. Two heuristics for evaluation of newly-constructed features are proposed, and their statistical significance verified. Finally, it is shown how the proposed framework can be used to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1509.08830 شماره
صفحات -
تاریخ انتشار 2015